Telluride Workshop on Nuclear Pore Complexes and Smart Polymers (2016)

Titles

1. Alexsey Aksimentiev Nanopore Transport of Proteins
2. Shigeru Amemiya Nanoelectrochemical Study of Molecular Transport through the Nuclear Pore Complex
3. Rob Coalson Design Principles for Smart Polymer Nanovalves Inspired by the Nuclear Pore Complex
4. David Cowburn Selective Diffusion in the Nuclear Pore
5. Cees Dekker TBA
6. Michael Elbaum Nuclear Transport as a Thermodynamic Engine
7. Ajay Gopinathan Co-Operative Interactions Between Different Classes of Nucleoporins
8. Marina Guenza Correlation Between Cooperative Fluctuations and Binding in Protein Recognition
9. Adam Hall Binary Detection and Quantification of Disease Biomarkers with Solid-State Nanopores
10. Loren Hough In Cell NMR Experiments to Probe the Role of Intrinsic Disorder in the Molecular Mechanism of Nuclear Transport
11. Larisa Kapinos Mechanism of Cargo Release by RanGTP at the Nuclear Pore Complex
12. John Kasianowicz TBA
13. Ulrich Keyser Understanding and Designing of Nanopores for Optimised Transport
14. Edward Lemke TBA
15. Mohammad Mofrad Multiscale Models of the Nuclear Pore Complex
16. Fabien Montel Transport Through the Nuclear Pore Complex: Crowding and Plasticity
17. Siegfried Musser PALM and Polarization PALM of the Nuclear Pore Complex
18. Ralf Richter Minimal Physical Polymer Models to Describe FG Nucleoporin Domain Assemblies and Their Interaction with Nuclear Transport Receptors
19. Meni Wanunu TBA
21. Ludovit Zweifel Towards Biomimetic Nuclear Pore Complexes Built from Glass Nanocapillaries